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Efficient complex systems have a modular structure, but mod-
ularity does not guarantee robustness, because efficiency also
requires an ingenious interplay of the interacting modular com-
ponents. The human brain is the elemental paradigm of an
efficient robust modular system interconnected as a network of
networks (NoN). Understanding the emergence of robustness in
such modular architectures from the interconnections of its parts
is a longstanding challenge that has concerned many scientists.
Current models of dependencies in NoN inspired by the power
grid express interactions among modules with fragile couplings
that amplify even small shocks, thus preventing functionality.
Therefore, we introduce a model of NoN to shape the pattern of
brain activations to form a modular environment that is robust.
The model predicts the map of neural collective influencers (NCIs)
in the brain, through the optimization of the influence of the
minimal set of essential nodes responsible for broadcasting infor-
mation to the whole-brain NoN. Our results suggest intervention
protocols to control brain activity by targeting influential neural
nodes predicted by network theory.

brain | collective influence | robustness | network of networks |
optimal percolation

Experience reveals that the brain is composed of massively
connected neural elements arranged in modules (1, 2) spa-

tially distributed, yet highly integrated to form a system of net-
work of networks (NoN) (3–9). These modules integrate in larger
aggregates to ensure a high level of global communication effi-
ciency within the overall brain network, while preserving an
extraordinary robustness against malfunctioning (3–5).

The question of how these different modules integrate to
preserve robustness and functionality is a central problem in
systems science (3–5). The simplest modular model (2) would
assign the same function to the connections inside the modules
and across the modules. However, the existence of modularity
gives rise to two types of connections of intrinsically different
nature: the intermodular links and intramodular links (6, 9–11).
Intramodular links define modules usually composed of clus-
tered nodes that perform the same specific function, like, for
instance, the visual cortex responsible for processing visual infor-
mation. Besides having intralinks, nodes in a given module may
have intermodular connections to control or modulate the activ-
ity of nodes in other spatially remote modules (3, 5, 6, 9, 12).

For example, in integrative sensory processing, the intermod-
ular links mediate the bottom-up (or stimulus-driven) processes
from lower-order areas (e.g., visual) to higher-order cortical
ones, and top-down (or goal-directed) control from higher lev-
els to lower ones (3, 5, 6, 12). Indeed, in studies of attention,
the pattern of brain activation indicates that high-level regions
in dorsal parietal and frontal cortex are involved in controlling
low-level visuospatial areas forming a system of networks con-
nected through intermodular control links (dorsal-frontoparietal
NoN) (6, 12). The purpose of this work is to introduce a minimal
model for a robust brain NoN made of such intramodule connec-
tions and intermodular controllers, which, by abstracting away

complexity, will allow us to make falsifiable predictions about the
location of the most influential nodes in the brain NoN. Target-
ing these neural collective influencers (NCIs) may help in design-
ing intervention protocols to control brain activity prescribed by
network theory (13, 14).

Results
We consider a substrate NoN composed by two modules (Fig.
1A; below, we generalize to more modules). Every node i has k in

i

intramodular links to nodes in the same module and kout
i inter-

modular links to control other modules (for the sake of simplic-
ity, we first consider the case kout

i ∈ {0, 1} for every node i ; the
general case kout

i ∈ N0 will be treated later). Because controlling
links connect two different modules, they are fundamentally dif-
ferent from intramodular ones: The latter encode only the infor-
mation about if two nodes are connected or not inside a mod-
ule, whereas the former carry the additional information about
how nodes control each other in two different modules. We arrive
to an important difference between both types of links that has
been recognized in previous NoN models (10). An intermodu-
lar link between two nodes exists because of their mutual depen-
dence across two distinct modules performing different functions.
Therefore, it is reasonable that, for this intermodular link to be
active, both nodes across the modules should be active. On the
contrary, nodes inside a module connected only via intramod-
ular links that do not participate in intermodular dependencies
will be active independently on the other module’s activity. The
intralinks and interlinks are analogous to the strong and weak
links defining hierarchical modules in the NoN in refs. 9 and 11.

Significance

Evidence suggests that the brain is arranged in functionally
specialized modules to form a network of networks (NoN).
Understanding how functionality emerges from the integra-
tion of such modular architectures is one of the greatest sci-
entific challenges. We introduce a model of brain NoN, which
is robust against random node failures, captures the integra-
tion of functionally specialized modules in the brain, and pro-
vides falsifiable predictions about the locations of the most
influential nodes, called neural collective influencers, in the
brain network—predictions that are impossible in existing but
fragile models of interdependent NoN. If confirmed by experi-
ment, our results may pave the way for applications of clinical
interest.
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Fig. 1. Definition of NoN model. (A) Substrate NoN. Each node has kin
i

intramodular links and kout
i intermodular control links. Nodes send infor-

mation through two messages to their neighbors: a message ρi→j along
the intralink and a message ϕi→k along the control link. (B) Control rule
Eq. 3. A node i in the substrate NoN may receive an external input ni = 1, or
not ni = 0. If the node has no control link, it activates as soon as it receives
the external input: ni = 1 =σi . If it has 1 control link, it activates σi = 1 if
and only if (iff) it receives the input, ni = 1, and its neighbor at the edge
of the interlink receives the input as well (nj = 1). If it has 2 control links
(or more) it activates (σi = 1) iff it receives the input and at least one node
among its j neighbors at the edge of the interlink also receives an input
nj = 1, otherwise it does not activate (σi = 0). (C) Activation of the mutual
giant component. Global communication in the NoN is measured through
the largest active component, G, which is measured only with the active
nodes σi = 1. We start with a NoN with no external input (all ni = 0), then
G = 0 (stage 1). Once an input is presented to the brain NoN (stage 2),
nodes activate according to the rules in B, and the largest component of
activated nodes defines G (stage 3), which is not necessarily equal to the
sum of the individual giant components of the single networks. Note the
crucial ingredient of the model (not shared by the model of ref. 10): Active
nodes (σ= 1) may exist outside G, and they can have intermodular control
links with other nodes outside the giant component. Thus, nodes can be
active without being part of the giant component of their own network in
contrast to the rules in ref. 10. (D) Collective influence. The collective influ-
ence of node i is determined by the sum of the degree of nodes in G on the
surface of two balls of influence with radius `: ∂Ball(i, `) centered at i, and
∂Ball(j, `) centered at j, where j is a neighbor of i at the edge of an interlink
having out-degree kout

j = 1.

To elaborate on the mode of intermodular control, think of
a node i as a receiver of inputs external to the NoN, such as
external sensory inputs to the primary visual cortex (Fig. 1B and
SI Appendix). The input variable ni =1, 0 specifies whether i
receives the external input (ni =1) or not (ni =0). For exam-
ple, in the visual system, ni =1 is the subset of nodes receiving
inputs in the earlier stages in cortical sensory processing (6).

According to the discussion above, the input ni alone does not
determine the activation/inactivation state of the node i , which
we measure by the state variable σi taking values σi =1 if i is
activated, and σi =0 if not. When i has a control link with j

in another network, the state σi is determined not only by the
input ni , but also by the input nj to j : node i is activated σi =1
only when both nodes receive the input (ni =1 and nj =1).
On the contrary, when at least one of the i , j nodes does not
receive input (ni =0 or nj =0), node i is shut down σi =0. This
top-down and bottom-up control between different modules is
quantified by the following control rule, which acts as a logical
AND between two controlling nodes (we consider kout

i = {0, 1};
Fig. 1B):

σi = ni nj , control rule for kout
i = 1. [1]

Because not all nodes participate in the control of other nodes,
a certain fraction of them [determined by the degree distribution
P(kout)] do not establish intermodular links with other nodes,
kout
i =0. These nodes without control-links (Fig. 1B) activate as

soon as they receive an external input, that is,

σi = ni , control rule for kout
i = 0. [2]

Generalization of the control rule to more than one control
link per node can be done in different ways. Here, we consider
that a node is activated (σi =1) iff it receives the input ni =1 and
at least one among the nodes j in another module connected to
i via a control link receives also an input (i.e., nj =1). Otherwise
i is not activated (Fig. 1B). Mathematically:

σi = ni

[
1−

∏
j∈F(i)

(1− nj )

]
, general control rule [3]

where F(i) is the set of kout
i nodes connected to i via intermodu-

lar control links. In the following, we always refer to the general
control model Eq. 3, unless stated otherwise.

The distinction between ni and σi models the initial sensory
inputs (ni) and the final state response of the brain (σi) to those
stimuli from top-down and bottom-up influences (6). Thus, the
final state of the brain network σi encodes the brain’s interpre-
tation of the world by modulating external input ni via controls
(Eq. 3) from other cortical areas (Fig. 1C). We note that a gen-
eral model should explain brain activation, even when no exter-
nal input is applied to the NoN (e.g., in resting-state brain). This
may be accounted for by a dynamical system that drives the NoN
into stable attractors, which in resting state may need no external
input anymore.

Apart from receiving inputs ni and controlling other nodes via
Eq. 3, active nodes can also broadcast information to the net-
work. When all nodes are active, the information sent by a node
can reach the whole brain NoN. If some nodes become inactive
(i.e., σi =1→σi =0), the remaining active nodes group together
in disjoint components of active nodes, such that information
starting from an active node in one active component cannot
reach another active node in a different active component. We
quantify the global communication efficiency of the brain NoN
with the size of the largest (giant) mutually connected active
component G made of active nodes σi =1 (stage 3 in Fig. 1C)
(9–11). By strict definition, G could be (almost) the entire brain
(e.g., a visual stimulus sets off emotional cues, memory areas,
etc.). In what follows, we will restrict the NoN to specific systems
of interest in the brain, like the visual or motor system, which are
identifiable by fMRI methods for a particular single task.

Each configuration of active/inactive nodes ~σ = (σ1, . . . , σN )
is associated with a specific working mode of the brain. The
plethora of different functions dynamically executed by the brain
(4–7) results in the moment-by-moment changes of the config-
uration (σ1, . . . , σN ), and thus in different values of G . The
crux of the matter is that, for typical input configurations ~n =
(n1, . . . ,nN ) [i.e., the ones produced by the majority of the exter-
nal (e.g., visual) inputs], G has to be large enough for a global
integration of information from distributed areas in the brain.
In other words, the brain NoN has to remain globally activated

3850 | www.pnas.org/cgi/doi/10.1073/pnas.1620808114 Morone et al.
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during the acquisition of different inputs, meaning that G has to
be robust, and the more robust, the more states the brain can
achieve. Therefore, a model of a brain NoN must be able to cap-
ture such robustness.

In our statistical mechanics approach, being robust means that
the brain should develop an extensive G for typically sampled
configurations of the external inputs. As a first approximation, we
assume that these inputs are sampled from a flat (random) distri-
bution of ~n . Thus, we first study the robustness of the NoN across
the configurations of states typically sampled by the brain. The
problem then becomes a classical percolation study of the NoN
(10) following the activation/inactivation rule of Eq. 3. Having
established our model in the normal brain under typical inputs,
we will then move to disease states, which impede global com-
munication by annihilating focal essential areas in G (13, 14).

We calculate G induced by typical random configurations of
inputs ~n as a function of the fraction q =1−〈n〉 of zero inputs
[these zero inputs are analogous to removed nodes in classical
percolation (9–11)], and we show that G remains sizeable, even
for high values of q , thus probing the robustness of the model
NoN. At a critical value qrand, we find the random percolation
critical point G(qrand) = 0 (9–11) separating a globally connected
phase with nonzero G (q < qrand) > 0 from a disconnected phase
G(q > qrand)= 0 composed of fragmented subextensive clusters
with no giant component in the thermodynamic limit. The most
robust NoN is tantamount to a system with no disconnected
phase (i.e., with a large value of qrand, ideally qrand =1). That is,
the brain is robust if it can sustain a well-defined giant connected
component for as many typical inputs as possible.

The dynamics of information flow in the NoN is defined as
follows. Generally speaking, each node processes activity from
neighboring nodes. Here, we abstract this coding process by con-
sidering that nodes receive information from other nodes via
“messages” containing the information about their membership
in G . Based on the information they receive, nodes broadcast
further messages, until they eventually agree on who belongs
to G across the whole network. Because there are two types
of links, we define two types of messages: ρi→j ∈{0, 1} running
along an intramodular link, and ϕi→j ∈ {0, 1} running along an
intermodular control link, where {0, 1} represents a {no, yes} “I
belong to G” message, respectively (Fig. 1A).

In this view, the existence of an extensive giant mutually
connected component across the NoN, G > 0, expresses a per-
colation phase produced by the binding of activation patterns
across different modules in a distributed emergent global sys-
tem. Under this interpretation, perception is not the responsi-
bility of any particular cortical area, but is an emergent critical
property of the percolation of memberships interchanged across
all members of G (15). The percolation critical point qrand can be
interpreted as the transition between a phase of global percep-
tion G > 0 for q < qrand and a null perception phase characterized
by nonextensive disconnected components and the concomitant
G =0 for q > qrand.

The equations governing the information flow in the brain
NoN follow the updating rules of the membership messages
according to (analytical details in SI Appendix):

ρi→j = σi

[
1−

∏
k∈S(i)\j

(1− ρk→i)
∏

l∈F(i)

(1− ϕl→i)
]
,

ϕi→j = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
∏

l∈F(i)\j

(1− ϕl→i)
]
,

[4]

where S(i) \ j is the set of k in
i − 1 neighbors of node i in the

same module, except j . Eq. 4 indicates, for instance, that a posi-
tive membership message ρi→j =1 is transmitted from node i →
node j in the same module (analogously, ϕi→j transmits mes-
sages to the other module) if node i is active σi =1 and if it
receives at least one positive message from either a node k in the

same module ρk→i =1 or a node l in the other module ϕl→i =1.
The logical OR is important; it is the basis for such a robust
R-NoN brain model of activation as elaborated below.

To compute G , it is sufficient to know for each node i whether
it is or not a member of G , which is encoded in the quantity ρi ∈
{0, 1} representing the probability to belong to G = 〈ρi〉:

ρi = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
∏

l∈F(i)

(1− ϕl→i)
]
. [5]

Here, we arrive to an important point (illustrated in Fig. 1C),
which ultimately explains the robustness of our brain NoN: In
our model, a node can be active (σi =1) even if it does not belong
to the giant mutually connected active component G , thus pre-
venting catastrophic cascading effects. This feature of the brain
model is supported by neuroanatomical correlates: The brain
responds reasonably well to injuries, for instance, to areas such
as the arcuate fasciculus (the white matter tract that connects
the two most important language areas—Broca’s and Wernicke’s
areas). This property is the main difference between our model
and previous NoN models (10) describing catastrophic collapse
in power-grids (16), as discussed next.

Universality Classes of NoN. In the model of ref. 10, a node can be
active only if it belongs to the giant component in its own net-
work. Thus, in this model, the active/inactive state of a node is
controlled by the whole global giant component ρi , rather than
the local state variable σi , Eq. 3, as in our model. This means
that, in ref. 10, the state of a node is actually controlled by the
whole network [i.e., intermodular controls (therein called depen-
dencies) carry the weight of the extensive giant component].
Analogously, the NoN cannot be built from the G =0 phase,
because it would require the existence of extensive components
for each network. For this reason, the resulting NoN (10) is frag-
ile; a single inactivation of a node can lead to catastrophic col-
lapse of the whole active giant component [which, we note, can
be avoided by strong correlations between the hubs of different
networks (9)]. Conversely, the model of Eq. 3 allows nodes to be
active, even if they do not belong to G (i.e., when they belong
to nonextensive disconnected components). These small compo-
nents become crucial to build the G > 0 phase from the G =0
phase by adding interlinks to nonextensive components.

Indeed, the model of ref. 10 was proposed to capture the
fragility of certain manmade infrastructures, such as the catas-
trophic collapse of power grids (e.g., the Northeast U.S. blackout
of 2003, which allegedly started in a single power-line failure as
modeled in ref. 10). The equation to compute G in this catas-
trophic C-NoN model reads:

ρi = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
][
1−

∏
k∈F(i)

(1− ϕk→i)
]
. [6]

We note that Eq. 6 differs from R-NoN Eq. 5 in that the logical
OR has been replaced by the logical AND for message passing
in C-NoN.

A third possible model for NoN is the modular model (2) men-
tioned in the introduction, which assumes no difference between
intralinks and interlinks as studied in ref. 17. In this model, there
are no control links; therefore, nodes cannot control each other,
and the state equals the input: σi =ni . This model is described by
using only the intralink messages, ρi→j , corresponding to a sin-
gle network structure, albeit with modularity (2), and ρi is simple,
given by (no special messages between modules):

ρi = ni

[
1−

∏
k∈S(i)

(1− ρk→i)
]
. [7]
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We thus arrive to three different universality classes of NoN—
R-, C-NoN, and modular single network—according to the three
models given by Eqs. 5–7, respectively, which are defined accord-
ing to which variable controls the state of node i (σi , ρi , ni)
(Table 1). Among the three universality classes, only R-NoN is
robust with the functionality of control across modules via top-
down and bottom-up influences.

Robustness of the Brain NoN to Typical Inputs. We compute G(q)
from Eq. 5 when we present different typical random inputs ni

and show that the obtained percolation threshold qrand is close to
1. The results are first tested on synthetic NoN made of Erdös–
Rényi (ER) and scale-free (SF) random graphs (1).

Results in Fig. 2A show that our model indeed defines a robust
R-NoN characterized by large qrand. Additionally, Fig. 2B com-
pares model R-NoN Eq. 5 with the catastrophic C-NoN univer-
sality class Eq. 6, showing that these two models capture two
different phenomena, the former robust with larger qrand and
second-order phase transitions, and the latter catastrophic with
smaller qrand with first-order abrupt transitions.

Response to Rare Events: NCIs. Having investigated the behavior
of the model under typical inputs, we now study the response
of the brain NoN to rare events targeting a set of NCIs. These
are rare inputs: An optimal (minimal) set of nodes that when
they are shut down (ni =0) disintegrates the giant component
to G =0 using the smallest possible fraction of nodes, qinfl. This
is the process of optimal percolation (rather than classical ran-
dom percolation treated above) as defined in ref. 18. The mal-
function of these neural influencers could be associated with
pathological states of the brain arising from interruption of
global communication in the network structure, such as depres-
sion or Alzheimer’s disease. The underlying conjecture is that
these influencers could be responsible for neurological disorders
(13, 14). At the same time, activating this minimal set of neu-
ral influencers, (ni =1, σi =1), would optimally broadcast the
information to the entire network (19). Thus, these neural influ-
encers are also the minimal set of nodes that provide integration
of global activity in the NoN (15).

Finding this minimal set is a NP-hard combinatorial optimiza-
tion problem (19). Here, we follow ref. 18, which developed the
theory of optimal percolation for a system with a single net-
work and solve the problem in a NoN. As opposed to random
percolation that identifies qrand, optimal percolation identifies
the minimal fraction of influencers qinfl that, if removed, opti-
mally fragment the giant connected component [i.e., with mini-
mal removals (ni =0)]. We note that these neural influencers are
statistically rare (i.e., they cannot be obtained by random sam-
pling ~n).

The mapping to optimal percolation (18) allows us to find
brain influencers under the approximation of a sparse graph by
minimizing the largest eigenvalue λ(q , ~n) of a modified nonback-
tracking (NB) matrix (20) Mρϕ≡ (∂ρi→j/∂ϕk→`)ρ=ϕ=0 of the
NoN over all configurations of inputs ~n having a fraction q of
zero inputs (analytical details in SI Appendix). The NB matrix M̂

Table 1. Universality classes of NoN

Control
Universality class State control Robust functionality

Brain robust σi Yes Yes
R-NoN Eq. 5

Power-grid catastrophic ρi No Yes
C-NoN Eq. 6

Modular single ni Yes No
network Eq. 7

Fig. 2. Robustness and NCI in NoN. (A) Robustness of NoN under typical
random inputs. Size of the largest active component G(q) for typically sam-
pled inputs ~n for ER 2-NoN (meaning a NoN made of two ER networks)
for the R- and C-NoN universality classes (kout = 1 for all nodes, one-to-
one control links, total size N = 2 × 106). The large value of qrand in R-NoN
compared with C-NoN confirms the robustness of the former. The transi-
tion separating the phases G = 0 and G> 0 is 2nd-order in R-NoN and 1st-
order in C-NoN, reinforcing the fundamental difference (robust vs. frag-
ile) of these two universality classes (errors are SEM over 10 realizations).
(B) Phase diagram for R- and C-NoN. Behavior of qrand as a function of the
average 〈kin〉 for the ER 2-NoN in A, where each node has kout = 1. Here,
qrand is the fraction of nodes with zero inputs in one network (nodes in the
other network have all nonzero inputs). The difference in qrand between
R- and C-NoN ranges from 20% for 〈kin〉= 10 to 80% for 〈kin〉∼ 2.5. Ana-
lytically, we find for R-NoN with kout = 1, qrand = 1− 1/(2〈kin〉). (C) Rare
inputs and NCI in ER 3-NoN. Size of G(q) as a function of the untargeted
(ni = 0) nodes q for a NoN of three ER networks (total size N = 3 × 106).
Each network has 106 nodes, 〈kin〉= 4.0 and 〈kout〉= 0.5. We show the CI
optimization (red circles, `= 4) and the high-degree adaptive (HDA) heuris-
tic (blue squares; removal by highest kin) (21). The arrow marks the posi-
tion of the minimal fraction of influencers qinfl, which is smaller than the
HDA centrality (errors are SEM over 10 realizations). Other heuristic cen-
tralities perform worse than HDA. (D) Rare inputs and NCI in SF 3-NoN.
G(q) for a NoN with three SF networks (total size N = 3 × 106). Each net-
work is SF with 106 nodes, minimum and maximum degree kin

min = 2 and
kin

max = 103, and power-law exponent γ= 3. The node out-degree is Poisson-
distributed with average 〈kout〉= 0.5 (errors are SEM over 10 realizations).
The difference between CI (`= 3) and HDA is shown; HDA fails to identify
40% of influencers.

controls the stability of the solution of the broken phase G =0.
This solution becomes unstable (i.e., G becomes nonzero) when
the largest eigenvalue is 1. The minimal set of influencers ~ninfl
and their fraction qinfl are then found by solving: λ(qinfl, ~ninfl) =
min~n λ(qinfl, ~n)= 1.

The eigenvalue λ(~n) can be efficiently minimized by progres-
sively removing the input (ni = 1→ ni = 0) from the nodes with
the highest Collective Influence index CI`(i) (detailed derivation
in SI Appendix) given by (zi ≡ k in

i + kout
i − 1):

CI`(i) = zi
∑

j∈∂Ball(i,`)

zj +
∑

j∈F(i):

kout
j =1

zj
∑

m∈∂Ball(j ,`)

zm . [8]

The collective influence CI`(i) of node i is determined by two
factors (Fig. 1D). The first one is a node-centric contribution,
given by the first term in Eq. 8, where Ball(i , `) is the set of nodes
inside a ball of radius ` > 0 (` is the distance of the shortest
path between two nodes), centered on node i , and ∂Ball(i , `)
its frontier. This ball is grown from the central node i by
following both intralinks and interlinks, and thus may invade dif-
ferent networks in the NoN. The second factor is a node-eccentric
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contribution, given by the second term in Eq. 8, where the sum
runs over all nodes j connected to i by an interlink which have
out-degree equal to one kout

j =1 (this means that nodes j have
no other interlinks except to node i). The contribution of each of
these j nodes is given by growing another ball Ball(j , `) around
them. This last contribution is absent in the single network case
(18), and thus, it is a genuine new feature of the brain NoN.

The NCI are formally defined as the nodes in the minimal set
up to qinfl. To identify them, we start with all ni =1 and σi =1,
and we progressively remove one by one the inputs (setting
ni =1→ni =0) to the nodes having the largest CI`(i) value if
they are active σi =1. At each step, the CI`(i) values are recom-
puted, and the algorithm (described in detail in SI Appendix)
stops when G =0 where the NCI set is identified.

We first test our predictions on influencers using syntheti-
cally generated ER-NoN and SF-NoN. Fig. 2C and D show the
optimality (smaller qinfl) of our predicted set of influencers in
comparison with the high-degree centrality (21), a heuristic com-
monly used in graph analysis of pathological brain networks (14).
The theory allows us to predict the neural collective influence
map (NCI-map) of the brain as explained next.

NCI-Map of the NoN. We apply our model to a paradigmatic case
of stimulus-driven attention (9, 11, 22). The experiment con-
sists of a dual visual–auditory task performed by 16 subjects (SI
Appendix). Each subject received simultaneously a visual stimu-
lus and an auditory pitch, to which the subject has to respond
with the right hand if a number was larger than a reference and
with the left hand if a tone was of high frequency.

The rationale to choose this experiment, where stimuli are
received simultaneously, is that this imposes to select an appro-
priate response order with consequent deployment of high-level
control modules in the brain (22). This effect emphasizes the role
of top-down control of intermodular links that is the main effect
we are trying to capture in our model.

The brain NoN was inferred from the brain activity recorded
through functional magnetic resonance imaging (fMRI). Nodes
in the NoN represent fMRI voxels whose size is given by the nor-
malized spatial resolution of the fMRI scan 2× 2× 2 mm3. Pair-
wise cross-correlation between the BOLD signals of two nodes
represents only indirect correlations (known as the functional
connectivity network) capturing the weighted sum of all possible
direct interactions between two nodes that could arise from the
underlying unknown structural network and other interactions
modulating the activity of neurons (7). To construct the brain
NoN, we infer the strength of these interactions between nodes
by using machine learning maximum-entropy methods (23–25),
where we maximize the likelihood of the interactions between
nodes given the observed pattern of fMRI cross-correlations (full
details in SI Appendix). The resulting NoN is shown in Fig. 3A
and B, which is then used to identify the NCI in the brain net-
work activated for this particular task.

In all subjects, we observe the following (Fig. 3 A and B):
(i) A network partially covering the anterior cingulate (AC)
region, recruited for decision making and therefore process-
ing top-down and bottom-up control; (ii) a network covering
the medial part of the posterior parietal cortex (PPC), which
receives somatosensory inputs and sends the output to areas of
the frontal motor cortex to control particular movements of the
arms; and (iii) a network covering the medial part of the pos-
terior occipital cortex (area V1/V2), along the calcarine fissure,
which is responsible for processing visual information at lower
input levels (an additional auditory network was also observed;
SI Appendix).

We apply our theory to the AC-PPC-V1/V2 3-NoN to first test
the robustness under typical inputs and then obtain the NCI (rare
inputs). Indeed, the obtained brain 3-NoN is very robust to typ-
ical inputs, as shown by the large (close to one) qrand≈ 0.9 in
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Fig. 3. Brain-NoN. (A) The 3-NoN in dual-task fMRI experiment. Shown
is the spatial location of the three main networks for a typical subject (as
opposed to averaging over all subjects as in D) showing the anterior cingu-
late (AC; red), posterior parietal cortex (PPC; green), and posterior occipital
visual areas V1/V2 (blue). This 3-NoN structure appears consistently for all
16 subjects. Nodes in the NoN represent voxels in the fMRI BOLD signal of
normalized size 2 × 2 × 2 mm3. (B) Topology of the 3-NoN. Same as A, but
in the network representation with interlinks in gray. Number of nodes in
NoN is N = 1,134, 〈kin〉= 3.2, and 〈kout〉= 2.5. (C) Robustness and NCI. Size
of the largest active cluster G(q) as a function of the untargeted (ni = 0)
nodes q after CI optimization (red curve; `= 3) and after typical random
states (black; random percolation). (D) NCI-map of the human brain aver-
aged over 16 subjects. The color code ranges from 0 to 5.2 and represents
the number of subjects in which a node appears in the ranked NCI set (SI
Appendix). High-CI influential regions are located mainly in the AC module
for processing top-down control, whereas the influential nodes are rarely
located in the lower-level V1/V2 region. The PPC region contains a portion
of influential nodes closer to AC. (E) Complexity reduction to top NCI nodes.
Controlling links between different networks are mainly mediated by top
influencers.

Fig. 3C (black curve). Conversely, the theory is able to localize
the minimal set of NCI with qinfl≈ 0.2 (Fig. 3C, red curve). Using
these influential nodes, we construct the NCI-map averaging over
all subjects. The emerging NCI-map averaged over the 16 sub-
jects is portrayed in Fig. 3D (details in SI Appendix). We find that
the main influence region (high CI) is located mainly in the AC
module as expected, because AC is a central station of top-down
control. The areas of high influence also extends to a portion of
the PPC involved in both top-down and bottom-up control, and
it is less prominent in the V1/V2 areas, which are mostly involved
in processing input information and bottom-up interactions.
Therefore, the NCI-map of the brain suggests that control is
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deployed from the higher level module (AC) toward certain
strategic locations in the lower ones (PPC–V1/V2), and these
locations can be predicted by network theory. The complexity
reduction obtained by coarse-graining the whole NoN to the top
NCI in Fig. 3E highlights the predicted strategic areas in the brain.

Discussion
We present a minimal model of a robust NoN to describe the
integration of brain modules via control interconnections. The
key point of the model is that a node can be active, even if it
does not belong to the giant mutually connected active com-
ponent so that cascades are not fatal. Although our model is
expressed in abstracto by logic relations, it is able to make falsifi-
able predictions (e.g., the location of the most influential neural
nodes involved in information processing in the brain). If con-
firmed experimentally, our results may have applications of clini-
cal interest, in that they may help to design therapeutic protocols

to handle pathological network conditions and to retune diseased
network dynamics in specific neurological disorders with inter-
ventions targeted to the activity of the influential nodes predicted
by network theory. On the theoretical side, further extensions of
our model are also possible. For instance, the model could be
enriched by incorporating temporal dependence of brain activa-
tion, which is relevant for the theoretical description of synaptic
plasticity (26).
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